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Materials and Methods 

I provide further details on the data collection process for each sample of workers 

(Section 1), estimating frequencies from audio data (Section 2), the machine learning 

classification process for estimating the probability that a given clip is self-recorded by the 

lawyer (Section 3), and the survey design and implementation to test human detection and 

perception of bimodal clips (Sections 4 and 5). 

Section 1. Data Collection Process for Worker Samples 

Section 1.1. Main Dataset: Lawyers from Vault 100 Law Firms 

The Vault 100 is an annual ranking of the most prestigious law firms in the U.S.  I 

consider law firms that were listed in the Vault 100 rankings at least once between 2016 and 

2018. Based on information from a pilot sample, I dropped firms that had a live receptionist 24/7 

and firms where less than 10 percent of voicemail greetings were self-recorded by lawyers. This 

left me with 84 law firms. Table S1 provides a list of these law firms.  

From this list of 84 top private law firms, I used web scraping to collect the directory 

lawyers’ names and phone numbers. From May 2017 to January 2018, I collected 57,064 distinct 

phone numbers and used Voicent, an automated phone-calling software, to call each number 

during non-working hours (typically 2-5 AM EST), and to record each call that was successfully 

connected. I recorded the first 10 seconds of each successful call and extracted the first 3 seconds 

of each recording to minimize the likelihood of capturing silence or machine generated audio, 

such as generic instructions for leaving a message. 

To detect poor quality clips, I decomposed each 3-second clip into 225 subintervals. 

Specifically, each clip is represented as a time interval [0, 3] in seconds, and each subinterval in 

that clip is defined as [ 3𝑘
225

 , 3(𝑘+1)
225

 ] for k ∈ {0, …, 224}. I used Praat’s “To Intensity” function 
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on the upper bound of each subinterval. This function, which estimates the amplitude at a given 

point, returns the value -300 dB if the clip is silent. For each clip, if more than 30% of the 225 

sample points have an intensity of -300 dB, I eliminated the clip from my sample. A substantial 

number of clips were of poor quality, for example due to unnatural acceleration or fragmentation 

of sounds in the clip. These issues often resulted in a high proportion of silence in the clip.  

After eliminating unsuccessful recordings and poor quality clips, I extracted 39,962 

lawyers’ voicemail recordings from the 57,064 phone numbers. These comprise the main dataset 

of lawyers.  

Section 1.2. Verified Female Lawyers from the Main Dataset 

To determine which clips from the main dataset were self-recorded by a female lawyer, I 

listened to all clips from lawyers who were classified as female by ALM. If a clip was entirely 

recorded in first person by a human speaker, I classified the clip as self-recorded. This is in 

contrast to assistant-recorded clips, which are in third-person; ambiguous clips, which are 

human-recorded but do not contain first-person or third-person pronouns; machine-recorded 

clips, which are clearly distinct from human voices; and combinations of human-recorded and 

machine-recorded clips. I further eliminated poor-quality clips, for instance clips that contained 

static, live answers, dialing noises, or unnatural acceleration of sounds. Through this process, I 

identified 6,618 self-recorded clips; however, 210 of them sounded male, and further information 

from their webpages, such as profile pictures and gender pronouns, confirmed this for 209 of 

them.  I was unable to find gender information on one lawyer and omitted the clip from analysis.  

Given these verification procedures, I decided to use the sample of 6,408 clips. The finite 

mixture models failed to converge on a solution for 9 of these clips, leaving me with a final 

sample of 6,399 clips that were verified as self-recorded by a female lawyer. 
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Section 1.3. Auxiliary Dataset: Law Firm Assistants 

To find recordings of executive assistants of female lawyers, I listened to all clips from 

lawyers who were classified as female by ALM.  To maximize the chances of finding recordings 

of female assistants of male lawyers, I listened to all clips which fulfilled all the following 

criteria:  

1. The lawyers associated with these clips were classified as male by ALM. 

2. The clips had a mean frequency above 150 Hz, well above the unitary male frequency 

mode of 100 Hz. 

3. The clips had a probability of being self-recorded of at least 0.25, as determined by my 

machine learning classification. (see Section 3 for details on the machine learning classification 

process).  

 I classified a clip as assistant-recorded if the clip contained third-person pronouns and 

was not recorded by a human. I eliminated clips that were recorded by non-executive assistants 

(i.e., the assistants who spoke generally on behalf of the firm rather than for a specific lawyer), 

clips that were fully or partially machine-recorded, and poor-quality clips.  Through this process, 

I found 237 clips that were fully recorded by female executive assistants on behalf of female 

lawyers, and 412 clips that were fully recorded by female executive assistants on behalf of male 

lawyers.  

Section 1.4. Auxiliary Dataset: Lawyers Who Switched Firms 

I define “switchers” as lawyers who had switched firms since the initial collection of their 

voicemails. As noted in Section 1.1, the period of initial collection was between May 2017 to 

January 2018. To find the switchers, about two years after the period of initial collection, I 

recruited MTurk workers to check the webpages of lawyers whose voicemails had a probability 
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of being self-recorded of at least 0.5, as determined by my machine learning classification (see 

Section 3 for details on the machine learning classification process). The MTurk workers were 

selected on a first-come-first-served basis from a pool of US-based MTurk workers who had a 

HIT approval rate of 99% or more and who had over 10,000 approved HITs.  

I determined whether a lawyer had switched firms by clicking on their original profile 

page URL.  If the URL linked to the lawyer’s profile page, I determined that the lawyer had not 

switched firms. If the URL did not link to the lawyer’s profile page, for instance redirecting to a 

general directory or an error page, I determined that the lawyer had switched firms.  See Figure 

S4 for the survey format. 

I then recruited MTurk workers to find the switchers’ new firms, profile page URLs, and 

personal office phone numbers. I provided MTurk workers with the switchers’ names and old 

firms, and instructed respondents not to use sites other than Google, LinkedIn, and the lawyer’s 

new firm website when providing information to avoid third-party websites of unknown 

reliability. See Figure S5 for details on the survey format and instructions. 

As in Section 1.1, I used Voicent to collect voicemails from the new phone numbers.  For 

each lawyer, I checked if both the old and new recordings were self-recorded by the same lawyer 

following the procedure in Section 1.2.  In total, I found 627 lawyers with self-recorded 

voicemails at both their old and new firms.  Of these 627 lawyers, 198 lawyers were female, as 

further verified using the procedure in Section 1.2.  

Section 1.5. Auxiliary Dataset: Promoted Lawyers 

About two years after the period of initial data collection, I recruited MTurk respondents 

to check the job title of a subsample of lawyers from the lawyers’ webpages.  The workers were 

selected on a first-come-first-served basis from a pool of US-based MTurk workers who had a 
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HIT approval rate of 99% or more and who had over 10,000 approved HITs. I selected lawyers 

who fulfilled all the following criteria:  

1. Confirmed to have stayed at their original firm from the survey in Section 1.4. 

2. Associates as of May 2017 – January 2018. 

3. Had voicemails with a probability of being self-recorded of at least 0.5 (see Section 3 

for details on the machine learning classification process).   

I provided MTurk workers with the lawyers’ website URLs, and instructed them to 

classify the lawyers’ job title based on their personal webpage profiles.  See Figure S6 for the 

survey format. This process elicited promotions data for 1,925 female lawyers whose clips were 

verified as self-recorded by a female lawyer using the procedure in Section 1.2, and who were 

Associates as of May 2017 – January 2018. Of these 1,925 lawyers, 196 were promoted to 

Partner and 137 were promoted to Counsel/Other within the same firm as of January 2020.   

Section 1.6. Auxiliary Dataset: Supreme Court Lawyers 

From www.oyez.org, I collected data from 129 oral arguments made by female advocates 

at the U.S. Supreme Court between 1985 and 2005. From the recording of each argument, I took 

three voice samples and extracted the first 3 seconds of each sample.  The samples are from the 

opening sentence, closing sentence, and one sentence taken from the middle of the argument 

(approximately minute 15).   

Section 1.7. Auxiliary Dataset: RE/MAX Real Estate Agents 

I collected the name, franchise, directory URL, and office number of 1,694 RE/MAX 

residential real estate agents through web scraping. These agents constituted all agents in 

Chicago, Dallas, Houston, and Phoenix in the fields of first-time buyers, luxury properties, 

condominiums, residential acreages, and rentals that were listed on www.remax.com. I also 

http://www.oyez.org/
http://www.remax.com/
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collected the name, franchise, directory URL, and office number of 2,013 RE/MAX commercial 

real estate agents listed on http://www.remaxcommercial.com/Roster/Agents through web 

scraping. 

As in Sections 1.1 and 1.2, I used Voicent to collect voicemails from these phone 

numbers, and manually classified these clips as self-recorded by the agent by listening to them.  I 

successfully collected 539 self-recorded voicemails from the residential real estate agents, and 

527 self-recorded voicemails from the commercial real estate agents.  

I then recruited MTurk respondents to check the gender of agents who had self-recorded 

voicemails.  They were selected on a first-come-first-served basis from a pool of US-based 

MTurk workers who had a HIT approval rate of 99% or more and who had over 10,000 approved 

HITs. I provided MTurk respondents with the agents’ names and directory URLs, and instructed 

them to classify the agents’ gender based on their profile pictures.  See Figure S7 for the survey 

format. Of the 539 residential real estate agents, 337 were classified as female.  Of the 527 

commercial real estate agents, 159 were classified as female.  

 

Section 2. Estimating Frequencies from Audio Data 

I used Praat, an open-source program to extract frequency data from each clip (Boersma, 

1993). Praat chooses the frequency candidate associated with the highest local strength subject to 

various thresholds and the global path finder—a system that penalizes frequency variation across 

adjacent frames.  This way, background noise and nonhuman sounds are less likely to confound 

estimates. 

Specifically, to extract frequency data from each clip, I used the following baseline 

parameters for the function “To Pitch (ac)”:  

http://www.remaxcommercial.com/Roster/Agents
https://www.fon.hum.uva.nl/praat/
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Pitch Floor: 50 Hz;  

Pitch Ceiling: 400 Hz;  

Time Step: 5 milliseconds;  

Window: Hanning;  

Silence Threshold: 0.03;  

Voicing Threshold: 0.45;  

Octave Cost: 0.01;  

Octave-Jump Cost: 0.35;  

Voiced/Unvoiced Cost: 0.14.  

These parameters are defined by Praat as follows (Boersma, 1993; Boersma, 2001): 

• Pitch Floor: The minimum frequency that will be considered for 

estimation. A pitch floor of 50 Hz is well below the range of human voice frequencies 

produced by the natural voice register. The pitch floor also determines the length of the 

analysis window, which is 3/Pitch Floor seconds long. With a pitch floor of 50 Hz, the 

analysis window is 0.06 seconds long.  

• Pitch Ceiling: The maximum frequency that will be considered for 

estimation. A pitch ceiling of 400 Hz is well above the range of human voice frequencies 

produced by the natural voice register.  

• Time Step: The interval between frequency estimates. The points in the 

clip where the first and the last frequency estimates are taken depend on the length of the 

analysis window, which in turn depends on the pitch floor. For a clip represented as a 

time interval [0, 3] in seconds, a pitch floor of 50 Hz and time step of 5 milliseconds 

mean that Praat produces one frequency estimate per 5 milliseconds in the subinterval 
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[0.03, 2.97], for a total of 589 frequency estimates including the endpoints of the 

subinterval. 

I used the default Praat settings for the following: 

• Window: I use the default Hanning window 

• Silence Threshold: For each frame, if the local absolute amplitude peak is 

less than approximately Silence Threshold times the global absolute amplitude peak, the 

frame will be classified as “voiceless” (the frequency estimate will be a missing value). I 

use the default 0.03 as the silence threshold. 

• Voicing Threshold: For each frame, if the strengths of all frequency 

candidates in the frame are below Voicing Threshold, the frame will be classified as 

“voiceless” (the frequency estimate will be a missing value). I use the default 0.45 as the 

voicing threshold. 

• Octave Cost: This parameter determines how much higher-frequency 

candidates are favored relative to lower-frequency candidates. It is necessary to force 

Praat to choose a frequency candidate in the case of a perfectly periodic signal, where all 

autocorrelation peaks have equal values. I use the default 0.01 per octave as the octave 

cost.  

• Octave-Jump Cost: This parameter determines the extent to which rapid 

pitch changes between adjacent frames are disfavored. In conjunction with 

Voiced/Unvoiced Cost, this is a global path finder parameter that affects estimates across 

rather than only within frames. I use the default 0.35 as the octave-jump cost. 

• Voiced/Unvoiced Cost: This parameter determines the extent to which 

rapid transitions between voiced and voiceless frames are disfavored. In conjunction 
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with Octave-Jump Cost, this is a global path finder parameter that affects estimates across 

rather than only within frames. I use the default 0.14 as the voiced/unvoiced cost. 

With these parameters, each clip comprises 589 frames. For each frame, the best frequency 

candidates were determined using the function “Get value in frame”. Through this process, I 

obtained 589 frequency estimates for each clip, though many of these estimates are voiceless (i.e. 

missing values), and the number of such missing values differs across clips.  See Supplementary 

Text for robustness checks on the values of the parameters used.  

 

Section 3. Machine Learning Classification Process 

As in Section 1.2, I define a self-recorded clip as a clip which contains only a lawyer’s 

voice, as opposed to an automated voice, an assistant’s voice, or a combination of voices. Due to 

the large number of clips in the main dataset of 39,962 lawyers, I used machine learning to 

predict the probability that a clip is self-recorded for the main dataset. I used text information, 

acoustic information, and demographic information as predictors.  

I obtained text information for each clip by transcribing the clips with IBM Watson 

Speech Recognition API. I decomposed the transcribed text into individual words, and selected 

the 50 most frequent words and the number of words per clip as predictors (Table S2). I further 

manually selected 12 frequently occurring phrase patterns as predictors (Table S3). 

    I obtained acoustic information for each clip using Praat and selected eight acoustic 

variables as predictors (Table S4). I also obtained the demographic information of each lawyer 

from their websites. This information included: job title, practice area, law school, undergraduate 

school, any graduate degrees, graduation year for each degree earned, academic honors earned, 

and gender. Gender was assessed by scrutinizing lawyers’ first names, subjectively classifying 
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photos, searching for gendered pronouns in the lawyers’ biographical descriptions, and cross-

referencing the recorded greeting. Generally, these gender indicators perfectly corroborated one 

another. 

I set aside about 10% of the sample (the “ML sample”) for training, testing, and 

validation. I manually classified all clips in the ML sample as self-recorded or otherwise 

following the procedure in Section 1.2. I randomly selected 80% of the ML sample for training 

and validation (the “training and validation sample”) and the remaining 20% for testing (“the 

testing sample”). To address any possible overfitting issues, I used 5-fold cross validation to tune 

the model with the objective of minimizing logarithmic loss. I applied this procedure to four 

machine learning models: random forest, support vector machine, k-nearest neighbors, and 

XGBoost. Table S5 compares the predictive accuracy of the four models on the testing sample 

using a probability threshold of 0.5, and shows that XGBoost significantly outperformed the 

other three models with a predictive accuracy of 93.52%. With a probability threshold of 0.95, 

the XGBoost model had a predictive accuracy of 99.12%. I thus used XGBoost as my final 

machine learning model. 

Figure S7 ranks the fifteen most important attributes in the XGBoost model. For each 

decision tree, the importance of each attribute is calculated as the amount by which each attribute 

split point improves the performance measure, weighted by the number of observations for 

which the node is responsible.  The attribute’s importance is then averaged across all decision 

trees within the model.  Acoustic measurements played the most important role.  The most 

important non-acoustic variable was the number of words spoken by the lawyer in the greeting 

(coming in at sixth place).  Gender was the most important–and indeed the only–demographic 

variable identified in the top-fifteen ranking (coming in at eighth place). 
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Section 4. Survey Design for Detection of Mode-Switching  

To check if it was possible to consciously discern mode-switching behavior with the 

human ear alone, I surveyed 200 MTurk workers and asked them to listen to paired clips with 

similar mean frequency.  Each pair of clips comprised a Group 1 (bimodal) clip and a Group 2 

(unimodal) clip, and workers were asked to detect the bimodal clip.  The clips were played in 

reverse to eliminate the influence of vocal content while preserving the acoustic characteristics.  

The survey instructions and format are shown in Figure S8.  

The 250 paired clips I used for the survey are a subset of verified female Associates, one 

from each group (see Section 1.2), from the main dataset.  The clips obey the following criteria: 

1. Mean frequency 175-225 Hz.   

2. Demeaned low mode location estimate between -120 and -90 Hz (Group 

1) or -40 and -20 Hz (Group 2). 

Going from low to high mean frequency, I sequentially paired each Group 1 clip with a Group 2 

clip that had a mean frequency within 1 Hz of the Group 1 clip.  To obtain the final sample, pairs 

were chosen to minimize the mean frequency difference: 125 pairs where the bimodal clip had 

higher mean frequency, and 125 pairs where the bimodal clip had lower mean frequency.   

In MTurk terminology, a HIT is a copy of the same survey with different inputs. For 

example, HIT 1 may ask respondents to listen to clips 1-50, and HIT 2 may ask respondents to 

listen to clips 51-100, with both HITs having the same format and instructions. For each HIT 

question, the position of bimodal clip was randomized as either Recording 1 or Recording 2, and 

across questions for each HIT, the bimodal clip appeared 25 times as Recording 1 and 25 times 
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as Recording 2. In addition, across HITs, each of the 250 pairs was used 40 times. These 

specifications were not made known to the workers.  

Respondents were selected on a first-come-first-served basis from a pool of US-based 

MTurk workers who had a HIT approval rate of 99% or more and who had over 10,000 approved 

HITs.  Only one HIT per respondent was considered; if the respondent completed more than one 

HIT, all additional HITs were rejected.  After the first 100 HITs, I created male-only and female-

only versions of the survey to achieve balance in respondent sex.  In all, I had 100 male 

respondents and 100 female respondents across 200 HITs, with respondents self-reporting their 

sex.  

I sorted respondents into quartiles based on their mean accuracy on this survey.  In a 

follow-up survey, I asked the lowest and highest quartiles of female respondents and the lowest 

and highest quartiles of male respondents to complete a shorter version of the original survey 

with 3 sections of 10 questions each.  The base compensation of the follow-up survey was the 

same as that of the original survey, and the bonus compensation was doubled. 46 out of 50 male 

respondents and 38 out of 50 female respondents completed the follow-up survey.  As such, the 

response rate was 92% for males, 76% for females, and 84% in aggregate.  

Section 5. Survey Design for Relative Rating of Unimodal and Bimodal Clips  

To check if bimodality is correlated with perceptions of lawyers’ characteristics, I 

surveyed 200 MTurk workers and asked them to listen to the same paired clips as in Section 4.  

For this survey, clips were not reversed.  After listening to each pair, workers were asked to rate 

the speakers on a relative scale on competitiveness, dominance, risk-taking attitude, seniority, 

and trustworthiness on a seven-point Likert scale.  The survey instructions and format are shown 

in Figure S9. 
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For each question, the position of the bimodal clip was randomized as either Recording 1 

or Recording 2, and across questions for each HIT, the bimodal clip appeared 5 times as 

Recording 1 and 5 time as Recording 2.  The order of characteristics on the Likert scale was also 

randomized for each question.  These specifications, as well as any information about 

bimodality, were not made known to the workers. 

Respondents were selected on a first-come-first-served basis from a pool of US-based 

MTurk workers who had a HIT approval rate of 99% or more and who had over 10,000 approved 

HITs.  Only one HIT per respondent was considered; if the respondent completed more than one 

HIT, all additional HITs were rejected.  I created male-only and female-only versions of the 

survey to achieve balance in respondent sex.  In all, I had 100 male respondents and 100 female 

respondents across 200 HITs, with respondents self-reporting their sex.  
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Supplementary Text 

Robustness: Estimating Frequencies 

I show that the estimated share of Group 1 (bimodal) clips in the sample of 6,399 verified 

self-recorded female lawyers is robust to various alternative specifications for estimating 

frequencies.  The first row of Table S6 provides the baseline FMM estimation results and shows 

that the baseline estimated share of Group 1 clips is 0.36.  Table S7 provides a selection of 

alternative specifications used in accordance with suggested robustness checks in the literature 

(e.g., Vogel et al. (2009)).  Unless otherwise indicated, the baseline FMM and Praat 

specifications are used.  Except for the first row of Table S7, all other rows in the table use a 

random sample of 1,000 clips from the 6,399 verified self-recorded female lawyers, though the 

exact number of observations may vary slightly due to failure of FMM convergence.  

The first row of Table S7 shows the FMM estimation results using the residual from 

regressing the location of the low mode on years of experience, firm, title, and litigator fixed 

effects. It uses all clips in the sample of verified self-recorded female lawyers that have the 

demographic covariates necessary for the regression.  The baseline estimated share of Group 1 

clips is well within the 95% confidence intervals, showing that the FMM estimation results are 

robust to including demographic covariates.  Table S8 further shows that the correlation between 

the baseline FMM estimation and residualized FMM estimation is extremely high, at 0.985.  

The second row of Table S7 shows FMM estimation results with Octave-Jump Cost and 

Voiced/Unvoiced Cost set to 0.  This specification eliminates the use of Praat’s global pathfinder, 

such that the frequency candidate with the highest local strength in each frame, subject to the 

other thresholds and costs described in Section 2, is chosen as the frequency estimate for that 

frame without any between-frame adjustments.  Without the global pathfinder, the estimated 
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share of Group 1 clips dramatically increases from 0.36 at baseline to 0.64.  Since the global 

pathfinder smooths the distribution of frequency estimates across frames to minimize the 

influence of nonhuman sounds, turning the pathfinder off will result in a cluster of frequency 

estimates at the pitch floor, mechanically leading to a larger share of low mode detection.  

The third row of Table S7 shows FMM estimation results with Octave-Jump Cost 

increased from 0.35 at baseline to 0.5 and Voiced/Unvoiced Cost increased from 0.14 at baseline 

to 0.2.  This specification increases the influence of Praat’s global pathfinder, such that it more 

aggressively smooths the distribution of frequency estimates across frames, tending towards a 

less multimodal distribution of frequencies.  Despite the higher hurdle to estimating a secondary 

mode, the baseline estimate share of Group 1 clips remains within the 95% confidence interval.  

Furthermore, the lower end of the 95% confidence interval exceeds 0.3, showing that the share of 

Group 1 clips is robust to the increased influence of the global pathfinder.  

The fourth row of Table S7 shows FMM estimation results with OctaveCost doubled 

from 0.01 per octave at baseline to 0.02 per octave.  Compared to the baseline, this specification 

favors higher-frequency candidates relatively more, making it more challenging to estimate a 

lower secondary mode.  Despite the higher hurdle to estimating a secondary mode, the baseline 

estimate share of Group 1 clips remains within the 95% confidence interval.  Furthermore, the 

lower end of the 95% confidence interval exceeds 0.3, showing that the share of Group 1 clips is 

robust to increased weight on higher-frequency candidates. 

The fifth row of Table S7 shows FMM estimation results with the Gaussian smoothing 

window instead of the Hanning window.  The Gaussian window has double the length of the 

Hanning window and provides more accurate estimates in many settings (Boersma, 1993; 

Boersma, 2001).  The baseline estimated share of Group 1 clips remains within the 95% 
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confidence interval and is close to their center.  Furthermore, the lower end of the 95% 

confidence interval exceeds 0.3, showing that the share of Group 1 clips is robust to the use of a 

different analysis window. 

The sixth and seventh rows show results using alternative pitch floors.  Changing the 

pitch floor from the 50 Hz baseline implies a different analysis window length.  Specifically, a 

pitch floor or 40 Hz implies a larger analysis window of 75 milliseconds, whereas a pitch floor or 

60 Hz corresponds with an analysis window of 50 milliseconds. In both cases, the results are 

insignificantly different from the baseline results using a window of 60 milliseconds.   This also 

addresses a concern that Praat erroneously produces frequency estimates that are half or double 

the actual frequency.   

Robustness: Estimating Frequency Modes 

Table S9 shows aggregate model fit for a variety of mixture models using the 100 

demeaned percentiles of a random subsample of 1,000 clips from all 6,399 clips in the sample of 

verified self-recorded female lawyers.  In general, lower values of Akaike’s Information 

Criterion (AIC) and Bayesian Information Criterion (BIC) are better, but computational costs 

grow exponentially with 𝑔, the number of components in the mixture.  The rightmost column of 

the table shows that 𝑔 = 5 maximizes model fit according to BIC, and the marginal 

improvement from 𝑔 = 5 onwards is below 1% according to AIC. 

Table S10 shows how the estimated share of Group 1 (bimodal) and Group 2 (unimodal) 

clips vary with alternative specifications for estimating frequency modes.  Rows 1-6 use a 

random subsample of 1,000 clips from these 6,399 clips, though the exact number of 

observations may vary slightly due to failure of FMM convergence. Row 7 uses the full sample 

of 6,399 clips, and uses gamma instead of normal densities with a 5-component mixture.  The 
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estimated share of bimodal clips stabilizes from Row 4 (𝑔 = 5) onwards, supporting Table S9 in 

showing that 𝑔 = 5 maximizes the model fit. 

An additional robustness check draws from Silverman (1981), who provides a theoretical 

framework to test if the true unobservable population density has a specific number of modes.  

The basic idea builds on the property that when using a Gaussian kernel to estimate a density, the 

number of modes is a decreasing function of the bandwidth.  The standard method entails (1) 

locating for every k = 1, 2, ... the smallest bandwidth (‘critical bandwidth’) that can support k 

modes or less, (2) generating smoothed bootstrapped samples from each critical density using a 

Gaussian kernel, and (3) estimating the density of each smoothed bootstrapped sample using the 

critical bandwidth.  The proportion of samples with greater than k modes reflects the significance 

(i.e., p-value) of the critical bandwidth.  A low p-value is evidence against the null hypothesis 

that the underlying density has k or fewer modes.  Put differently, if all the samples indicate k or 

fewer modes, then the kernel density must be significantly oversmoothed to remove the 

appearance of mode k + 1.  The test is seen as conservative since the bootstrapped samples are 

drawn from the critical density only and tends to underestimate the true number of modes.  

Results from this test strongly reject unimodality of the voice frequency density of female 

lawyers (see Table S11). 

 

Literature on Mean Voice Frequency 

Speakers with deeper voices are perceived as more attractive, dominant, mature, and 

honest (Imhof, 2010; O’Hair and Cody, 1987).  Other studies have found that they are perceived 

as more truthful and empathic, and to possess greater leadership capacity (Klofstad et al., 2012; 

Apple et al., 1979).  One study by Mayew et al. (2013) uses data from quarterly conference call 



 
 

20 
 

recordings of public companies listed in the S&P 1500 to find that CEOs (albeit all male) with 

deeper voices manage larger companies.  

Several lab experiments document volitional voice frequency modulation by speakers. 

For example, in a simulated interview, Leongomez et al. (2017) show that interviewees speak in 

a higher voice when randomly assigned to a higher status interviewer (e.g., by varying title). 

Relatedly, voice frequency has been shown to change concurrently with superficial exaggeration 

or reduction of body size by a speaker (Pisanski et al., 2016). 
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Figure S1. Histogram of mean frequencies by mode group 
 

Notes: Figure S2 shows the histogram of mean frequencies for the 6,399 verified self-recorded 
female lawyer clips from the main dataset by mode group. Group 1 refers to bimodal clips, and 
Group 2 refers to unimodal clips. This graph only shows the distribution of mean frequencies 
across clips. Based on these data, there is no evidence for heterogeneity in female vocal 
behavior. This highlights the need to examine the distribution of frequencies within clips, as in 
Figure 1.  
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Figure S2. Histogram of Group 1 within-clip frequencies by mean voice frequency 
 
Notes: This figure presents the within-clip frequency histograms for the 2,334 Group 1 (bimodal) 
clips in the sample of 6,399 verified self-recorded female lawyer clips.  See main text for 
estimation methods. The red histogram uses Group 1 clips with mean frequencies above the 
Group 1 median frequency (“Group 1 high”), and the blue histogram uses Group 1 clips with 
mean frequencies below the Group 1 median frequency (“Group 1 low”). For Group 1 high clips, 
the location of the secondary mode is -109.867 Hz (std. error 0.268) away from the Group 1 high 
mean (206.209 Hz). For Group 1 low clips, the location of the secondary mode is -84.996 Hz 
(std. error 0.285) away from the Group 1 low mean (169.882 Hz). This suggests that female 
lawyers may mode-switch to reach a specific frequency near the unitary male mode, and that 
female lawyers with a higher mean voice frequency may face differential pressures to conform to 
the male voice frequency mode. 
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Figure S3. Sample MTurk HIT for finding lawyers who switched firms
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Figure S4. MTurk HIT for finding new office numbers of lawyers who switched firms 
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Figure S5. MTurk HIT for finding promoted lawyers 
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Figure S6. MTurk HIT for classifying real estate agents’ gender 
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Figure S7. Ranking feature importance for machine learning classification 
 

Notes: This figure ranks the fifteen most important attributes used in the XGBoost model for 
identifying voicemails that were self-recorded by lawyers. For each decision tree, the importance 
of each attribute is calculated as the amount by which each attribute split point improves the 
performance measure, weighted by the number of observations for which the node is responsible. 
The attribute’s importance is then averaged across all decision trees within the model. 
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Figure S8. MTurk HIT for perception of bimodality in voicemail greetings 
 
Notes: This figure (pages 22-24) shows the MTurk HIT instructions and format for the original survey to test whether MTurk workers 
could perceive bimodality in lawyers’ voicemail recordings. The follow-up survey had 3 sections instead of the original 5 and double 
the bonus compensation of the original survey, but was otherwise identical. See Section 4 for details on the survey design.
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Figure S9. MTurk HIT for relative rating of unimodal and bimodal clips 
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Table S1. List of law firms used in the main analysis 
Akin Gump Strauss Hauer & Feld LLP Keker, Van Nest & Peters LLP 
Allen & Overy LLP Kilpatrick Townsend & Stockton LLP 
Alston & Bird LLP King & Spalding LLP 
Arent Fox LLP Kirkland & Ellis 
Arnold & Porter Kaye Scholer LLP Kramer Levin Naftalis & Frankel LLP 
BakerHostetler Latham & Watkins LLP 
Baker McKenzie Locke Lord LLP 
Ballard Spahr LLP Manatt, Phelps & Phillips, LLP 
Blank Rome LLP Mayer Brown LLP 
Boies Schiller Flexner LLP McDermott Will & Emery 
Bracewell LLP Milbank LLP 
Bryan Cave Leighton Paisner LLP Morgan, Lewis & Bockius LLP 
Cadwalader, Wickersham & Taft LLP Morrison & Foerster LLP 
Cahill Gordon & Reindel LLP Nixon Peabody LLP 
Cleary Gottlieb Steen & Hamilton LLP Norton Rose Fulbright LLP 
Clifford Chance US LLP O'Melveny & Myers LLP 
Covington & Burling LLP Patterson Belknap Webb & Tyler LLP 
Crowell & Moring LLP Paul Hastings LLP 
DLA Piper Paul, Weiss, Rifkind, Wharton & Garrison LLP 
Davis Polk & Wardwell LLP Pepper Hamilton LLP 
Davis Wright Tremaine LLP Perkins Coie LLP 
Debevoise & Plimpton LLP Pillsbury Winthrop Shaw Pittman LLP 
Dechert LLP Proskauer Rose LLP 
Dentons Ropes & Gray LLP 
Dorsey & Whitney LLP Schulte Roth & Zabel LLP 
Faegre Drinker Biddle & Reath LLP Seyfarth Shaw LLP 
Fenwick & West LLP Shearman & Sterling 
Finnegan, Henderson, Farabow, Garrett & Dunner, LLP Sheppard Mullin 
Fish & Richardson P.C. Sidley Austin LLP 
Foley & Lardner LLP Simpson Thacher & Bartlett LLP 
Fox Rothschild LLP Skadden, Arps, Slate, Meagher & Flom LLP and Affiliates 
Gibson, Dunn & Crutcher LLP Squire Patton Boggs 
Goodwin Procter LLP Steptoe & Johnson LLP 
Haynes and Boone, LLP Susman Godfrey LLP 
Holland & Knight LLP Troutman Pepper Hamilton Sanders LLP 
Hunton & Williams LLP Venable LLP 
Irell & Manella LLP Vinson & Elkins LLP 
Jenner & Block LLP Weil, Gotshal & Manges LLP 
Jones Day White & Case LLP 
K&L Gates LLP Williams & Connolly LLP 
Kasowitz Benson Torres LLP Wilson Sonsini Goodrich & Rosati 
Katten Muchin Rosenman LLP Winston & Strawn LLP 
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Table S2. Most common words in voicemail greetings 

 Not Self-
Recorded 

Self-
Recorded t-stat 

reached 0.04 0.24 -14.03 
office 0.03 0.05 -2.20 
take 0.01 0.08 -8.12 
voicemail 0.01 0.05 -4.75 
please 0.07 0.21 -9.96 
leave 0.10 0.20 -6.26 
message 0.13 0.14 -0.17 
hello 0.02 0.11 -9.08 
away 0.00 0.03 -5.82 
hi 0.01 0.19 -15.52 
available 0.38 0.07 18.92 
sorry 0.25 0.07 12.03 
unable 0.00 0.02 -4.64 
often 0.00 0.01 -2.29 
now 0.01 0.08 -8.01 
currently 0.00 0.03 -5.09 
get 0.00 0.03 -4.16 
recorded 0.02 0.00 5.16 
time 0.00 0.01 -1.89 
return 0.00 0.01 -2.95 
method 0.03 0.00 4.61 
recall 0.02 0.00 4.09 
desk 0.00 0.02 -4.50 
preach 0.00 0.01 -4.15 
name 0.01 0.03 -4.03 
phone 0.00 0.03 -5.24 
thank 0.01 0.01 -0.64 
one 0.02 0.01 0.74 
think 0.01 0.01 -0.86 
got 0.01 0.01 -0.23 
freak 0.00 0.01 -3.76 
missed 0.00 0.02 -4.39 
mailbox 0.01 0.01 0.67 
either 0.00 0.01 -2.42 
okay 0.01 0.00 0.42 
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forwarded 0.01 0.00 2.84 
messaging 0.01 0.00 2.46 
system 0.01 0.00 2.76 
met 0.01 0.00 2.58 
cared 0.00 0.00 0.63 
god 0.00 0.00 -0.74 
great 0.00 0.01 -0.90 
another 0.00 0.01 -2.08 
map 0.00 0.00 -2.24 
firm 0.00 0.01 -3.02 
eight 0.00 0.00 0.09 
table 0.00 0.00 -0.52 
dc 0.00 0.00 -1.73 
Total words 3.40 5.41 -33.51 

 
Notes: This table shows the most frequent words and the number of words per clip for lawyer 
voicemails in the main dataset. These attributes were used as machine learning predictors for 
identifying voicemails that were self-recorded by lawyers.  
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Table S3. Frequently-occurring phrase patterns in voicemail greetings 

Variable Name Significant Phrase 

Key pattern 1 This is / This 

Key pattern 2 You have reached / You reached/ You reach/ YMy reached 

Key pattern 3 office of/ desk of/voice mail of/ voicemail of/mail 

Key pattern 4 I am/am/my/mine 

Key pattern 5 Away from/on the phone/away/phone 

Key pattern 6 Record message/record a message 

Key pattern 7 leave a message/leave message/left a message/left message 

Key pattern 8 Missed yMy call/miss you call/missed you call 

Key pattern 9 is 

Key pattern 10 you/your/yours 

Key pattern 11 Call/calling/called/k 

Key pattern 12 Thank/thanks/thank you 

 
Notes: This table shows the 12 frequently-occurring phrase patterns in lawyer voicemails in the 
main dataset. These attributes were used as machine learning predictors for identifying 
voicemails that were self-recorded by lawyers.  
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Table S4. Acoustic variables used as machine learning predictors 
Variable Name      Description 

𝑚𝑎𝑥  The maximum frequency of the clip 

𝑚𝑖𝑛  The minimum frequency of the clip 

𝑚𝑒𝑑𝑖𝑎𝑛  The median frequency of the clip 

𝑚𝑒𝑎𝑛  The mean frequency of the clip 

𝑠𝑡𝑑𝑒𝑣  The standard deviation of the frequency of the clip 

𝑚𝑖𝑛_𝑖𝑛𝑡𝑒𝑛  The minimum value of intensity of the clip 

𝑞𝑖  The 𝑖th quantile frequency of the clip, 1 ≤ 𝑖 ≤ 100 

𝑖𝑛𝑡_𝑖  The intensity of  𝑖th interval of the clip. Each clip is divided into 225 

intervals with equal length. 1 ≤ 𝑖 ≤ 225 

 
Notes: This table shows the acoustic features of lawyer voicemails in the main dataset that were 
used as machine learning predictors for identifying voicemails that were self-recorded by 
lawyers.  
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Table S5. Comparison of machine learning models 

Model Accuracy Ratio 

Random Forest 86.66% 

Support Vector Machine 87.27% 

K-nearest Neighbours 85.04% 

XGBoost 93.52% 
 
Notes: This table compares the performance of four machine learning models in identifying 
voicemails that were self-recorded by lawyers. The table reports the predictive accuracy of the 
models on the testing sample using a probability threshold of 0.5.  
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Table S6. FMM results for Figure 3b 

 
Notes: Refer to main text for descriptions of samples. Delta method standard errors in parentheses. 
  

Sample Low Mode  
(Share) 

Low Mode 
(Location) 

Primary Mode 
(Location) Observations 

All Verified 
Lawyers 

0.360 
(0.007) 

86.139 
(0.381) 

162.481 
(0.423) 6,399 

Partners 0.385 
(0.036) 

87.114 
(1.819) 

166.485 
(2.009) 196 

Counsel/Other 0.414 
(0.042) 

87.794 
(1.910) 

174.106 
(2.519) 137 

Switchers 
(Previous Firm) 

0.338 
(0.034) 

88.704 
(1.709) 

163.450 
(1.935) 198 

Switchers 
(New Firm) 

0.380 
(0.036) 

86.103 
(1.682) 

158.741 
(2.301) 198 

SCOTUS 
(beginning) 

0.329 
(0.044) 

80.136 
(3.932) 

177.978 
(3.011) 129 

SCOTUS 
(middle) 

0.380 
(0.046) 

87.720 
(3.436) 

175.494 
(2.836) 129 

SCOTUS 
(end) 

0.410 
(0.047) 

85.402 
(2.969) 

177.180 
(3.272) 129 

Assistants 
(Female Lawyer) 

0.387 
(0.0336) 

82.851 
(1.724) 

157.590 
(1.892) 237 

Assistants 
(Male Lawyer) 

0.255 
(0.028) 

84.435 
(3.334) 

162.179 
(1.616) 412 

REMAX 
Residential 

0.214 
(0.027) 

87.717 
(2.899) 

171.143 
(1.880) 337 

REMAX 
Commercial 

0.181 
(0.042) 

84.948 
(5.880) 

164.107 
(2.819) 159 
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Table S7. Robustness of unobserved heterogeneity to frequency measures 

 
Notes: The first row shows results using the residuals from regressing the location of the low 
mode (estimates from baseline 5-comp. FMM) on years of experience, firm, title, and litigator 
fixed effects. All subsequent rows use the baseline FMM.  Rows 2-7 use the same random subset 
of 1,000 recording described earlier.  The second row switches off the pathfinder feature in Praat, 
which penalizes sharp changes in frequency. The location estimates are similar, but the 
distribution of groups is significantly different. The third row uses pathfinder parameters with 
increased values, which is the opposite of switching off the pathfinder. The fourth row uses 
double the OctaveCost as the baseline specification, thereby favoring higher-frequency 
candidates more. The fifth row uses a Gaussian window to smooth the data rather than the 
default Hanning window. The sixth row uses a higher pitch floor, which implies a narrower 
analysis window of 50 milliseconds, and the seventh row uses a lower pitch floor, which implies 
a wider analysis window of 75 milliseconds. See Supplementary Text for further details.  
 
 
 
 
 
 

Frequency 
Estimates Group 95% C.I.  

(Share) 
95% C.I. 

(Location) Group 95% C.I.  
(Share) 

95% C.I. 
(Location) Obs. 

Residualized 
Baseline 1 

 
(0.347, 
0.380) 

 

 
(-48.243, 
-46.326) 

 

2 

 
(0.620, 
0.653) 

 

 
(25.943, 
28.044) 

 

4,682 

 
No 
Pathfinder 
 

1 

 
(0.611, 
0.674) 

 

 
(80.938, 
83.021) 

 

2 

 
(0.326, 
0.389) 

 

 
(158.863, 
164.568) 

 

999 

 
Stronger 
Pathfinder 
 

1 

 
(0.313, 
0.378) 

 

 
(83.361, 
87.649) 

 

2 

 
(0.622, 
0.687) 

 

 
(160.376, 
164.321) 

 

998 

 
Double 
OctaveCost 
 

1 

 
(0.309, 
0.374) 

 

 
(83.709, 
87.763) 

 

2 

 
(0.626, 
0.691) 

 

(160.617, 
164.596) 997 

 
Gaussian 
Window 
 

1 

 
(0.330, 
0.395) 

 

 
(84.465, 
88.315) 

 

2 

 
(0.605, 
0.670) 

 

 
(160.947, 
164.894) 

 

998 

60 Hz Floor 1 (0.340, 
0.408) 

(84.672, 
87.711) 2 (0.592, 

0.660) 
(157.858, 
162.423) 997 

40 Hz Floor 1 (0.297, 
0.362) 

(84.189, 
88.385) 2 (0.638, 

0.703) 
(161.029, 
164.884) 988 
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Table S8. Robustness: Low mode prediction 
 

Correlation matrix Fixed effects model 
 

Base model 
 

Fixed effects model 
 
1 
 

 

Base model 
 

0.985 
 

1 

 
Notes: This table shows the correlation between the baseline FMM model and the frequency 
estimates using the residual from regressing the location of the low mode on years of experience, 
firm, title, and litigator fixed effects. n = 4,682.  See first row of Table S7 for more information 
on the fixed effects model used.  
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Table S9. FMM optimal number of components 

Model Obs. ll(model) df AIC 
AIC  
(% 

change) 
BIC 

BIC  
(% 

change) 

fmm1 100,000 -509800 2 1019604  1019623  

fmm2 100,000 -497941 5 995891.9 2.3256 995939.5 2.3228 

fmm3 100,000 -496770 8 993556.3 0.2345 993632.4 0.2317 

fmm4 100,000 -496509 11 993040 0.0520 993144.7 0.0491 

fmm5 100,000 -496462 14 992952.6 0.0088 993085.8 0.0059 

fmm6 100,000 -496445 17 992924.6 0.0028 993086.4 -0.0001 

fmm7 100,000 -496441 20 992922.5 0.0002 993112.8 -0.0027 

 
Notes: This table shows aggregate model fit for a variety of mixture models using 100 demeaned 
percentiles of a random sample of 1,000 from all 6,399 clips in the sample of verified self-
recorded female lawyers. The results show that 𝑔 = 5 maximizes model fit according to 
Bayesian information criterion (BIC), and the marginal improvement from 𝑔 = 5 onwards is 
below 1% according to Akaike’s information criterion (AIC). 
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Table S10. Robustness of unobserved heterogeneity to low mode measures 

 
Notes: This table shows how the estimated share of Group 1 (bimodal) and Group 2 (unimodal) 
clips vary with alternative specifications for estimating the clip-level frequency modes. Results 
are from a 2-component FMM applied to the different individual low mode estimates. The 
number of observations column refers to the clip-level FMM estimation of the 1,000 female 
lawyers described above. Missing observations are due to clip-level convergence failures.  The 
bottom row presents results from the full sample of verified female lawyers, substituting normal 
with gamma densities in a 5-component mixture.  The results are similar for all but the 2 and 3 
component models. For these, the mode shares were significantly skewed toward the primary 
mode relative to the other results.  See Supplementary Text for details.  
 
 
 
  

Individual 
FMM 
Comp. 

Group 95% C.I.  
(Share) 

95% C.I. 
(Location) Group 95% C.I.  

(Share) 
95% C.I. 

(Location) Obs. 

2 1 

 
(0.085,  
0.124) 

 

 
(84.306,  
90.325) 

 

2 

 
(0.876,  
0.915) 

 

 
(179.291, 
182.219) 

 

1,000 

3 1 

 
(0.275,  
0.335) 

 

 
(84.854,  
88.660) 

 

2 

 
(0.665,  
0.725) 

 

 
(169.137, 
172.829) 

 

999 

4 1 

 
(0.324,  
0.389) 

 

 
(84.979,  
88.612) 

 

2 

 
(0.611,  
0.676) 

 

 
(163.034, 
167.051) 

 

998 

5 1 

 
(0.348,  
0.416) 

 

 
(84.535,  
88.411) 

 

2 

 
(0.584,  
0.652) 

 

 
(160.970, 
165.396) 

 

1,000 

6 1 

 
(0.371,  
0.439) 

 

 
(84.177,  
87.852) 

 

2 

 
(0.561,  
0.629) 

 

 
(159.477, 
163.799) 

 

990 

7 1 

 
(0.365,  
0.436) 

 

 
(84.496,  
88.500) 

 

2 

 
(0.564,  
0.635) 

 

 
(157.795,  
162.334) 

 

989 

5 
(Gamma) 1 

 
(0.371, 
0.398) 

 

 
(87.362,  
89.116) 

 

2 

 
(0.602, 
0.629) 

 

 
(163.494,  
165.054) 

 

6,399 
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Table S11. Silverman test for number of modes 

𝐇𝟎 
Critical 

Bandwidth 
(Hz) 

Change 
(%) 

Silverman 
p-value 

Mode 
Location 

(Hz) 
𝑚 ≤ 1 9.61 - 0 -11.41 
𝑚 ≤ 2 3.6 63 0.98 -86.15 
𝑚 ≤ 3 3.59 0 0.96 235.97 
𝑚 ≤ 4 3.58 0 0.62 169.33 
𝑚 ≤ 5 3.46 3 0.48 -102.39 

 
Notes: The table shows the results of the Silverman test against the null hypothesis that the 
underlying frequency density has m or fewer modes. This test used demeaned data from 1,000 
randomly selected clips from the main dataset that were self-recorded by female lawyers. For 
each additional mode, the test is performed by creating 50 perturbed samples of the 100,000 
frequency percentiles using the critical bandwidth identified with precision of 0.01 Hz or lower.  
The p-value is the proportion of samples that produced more modes than stated by the null. The 
Silverman test is seen as conservative since the bootstrapped samples are drawn from the critical 
density only and tends to underestimate the true number of modes. The results strongly reject the 
null hypothesis that the frequency density has a single mode (p-value = 0), but cannot reject that 
the number of modes is 2 or more.  The mode location refers to the distance from one’s mean 
frequency, estimated using 40 averaged shifted histograms (ASH-WARPing). Modes 3 and 
above are more than 100 Hz from the mean.   
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